Fixed Point Results for Non-Linear Operators with Comparisons

Authors

  • Ashish Kumar Department of Mathematics

DOI:

https://doi.org/10.36676/mdmp.v2.i2.40

Keywords:

J-iteration, Suzuki generalized non expansive mapping, stability.

Abstract

The purpose of this research article is to introduce a new iteration scheme and prove convergence and stability results for it. We also claim the newly introduced iterative scheme converges faster than some of the existing iterations in the literature. Our claim is supported by numerical example.

References

Abbas, M. and Nazir, T. (2014). A new faster iteration process applied to constrained minimization and feasibility problems. Mater. Vesn. 66, 223-234.

Agarwal, R. P., O’Regan, D. and Sahu, D. R. (2007). Iterative construction of fixed points of nearly asymptotically non-expansive mappings. J. Nonlinear Convex Anal., 8, 61-79.

Ali, J., Ali, F. and Kumar, P. (2019). Approximation of fixed points for Suzuki’s generalized nonexpansive mappings, Mathemaics, 1-11. DOI: https://doi.org/10.20944/preprints201905.0212.v1

Berinde, V. (2007). Iterative Approximation of Fixed Points, Springer, Berlin. DOI: https://doi.org/10.1109/SYNASC.2007.49

Bhutia,J.D. and Tiwari, K. (2019). New iteration process for approximating fixed points in Banach spaces. Journalof linear and toplogical algebra. 8(4), 237-250.

Erturk, M. and Gursoy, F. (2019). Some convergence, stability and data dependency results for Picard-S iteration method of quasi-strictly contractive operators, Mathematica Bohemica, 144, 69-83. DOI: https://doi.org/10.21136/MB.2018.0085-17

Harder, A.M. (1987). Fixed point theory and stability results for fixed point iteration procedure, University of Missouri-Rolla, Missouri.

Hussain, N., Ullah, K. and Arshad, M. (2018). Fixed point approximation for Suzuki generalized nonexpansive mappings via new iteration process, J. Nonlinear Convex Anal. 19 (8),1383-1393.

Thakur, B.S., Thakur, D. and Postolache, M. (2016). A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comp., 275, 147-155. DOI: https://doi.org/10.1016/j.amc.2015.11.065

Thakur, B.S., Thakur, D. and Postolache, M. (2016). A new iterative scheme for approximating fixed points of non-expansive mappings. Filomat. 30, 2711-2720. DOI: https://doi.org/10.2298/FIL1610711T

Mann, W.R. (1953). Mean value methods in iteration, Proc. Am. Math. Soc., 4, 506-510. DOI: https://doi.org/10.1090/S0002-9939-1953-0054846-3

Noor, M. A. (2000). New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and Applications, 251, 217–229. DOI: https://doi.org/10.1006/jmaa.2000.7042

Schu, J. (1991). Weak and strong convergence to fixed points of asymptotically non expansive mappings. Bull. Aust. Math. Soc. 43, 153-159. DOI: https://doi.org/10.1017/S0004972700028884

Soltuz, S.M. and Grosan, T. (2008). Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed point theory and applications. DOI: https://doi.org/10.1155/2008/242916

Suzuki, T. (2008). Fixed point theorems and convergence theorems for some generalized non-expansive mappings, J.Math. Anal. 340 (2), 1088-1095. DOI: https://doi.org/10.1016/j.jmaa.2007.09.023

Ullah, K. and Arshad, M. (2016). On different results for new three step iteration process in Banach Spaces. Springer Plus, 2016, 1-15. DOI: https://doi.org/10.1186/s40064-016-3056-x

Ullah, K. and Arshad, M. (2017). New iteration process and numerical reckoning fixed point in Banach space. U.P.B. sci. bull. (Series A). 79(4), 113-122.

Ullah, K. and Arshad, M. (2018). Numerical reckoning fixed point for Suzuki’s generalized non-expansive mappings via new iterative process. Filomat. 32, 187-196. DOI: https://doi.org/10.2298/FIL1801187U

Ullah, K. and Arshad, M. (2018). New three-step iteration process and fixed point approximation in Banach Spaces. Journal of linear and topological algebra, 7(2), 87-100.

Downloads

Published

15-05-2025

How to Cite

Ashish Kumar. (2025). Fixed Point Results for Non-Linear Operators with Comparisons . Modern Dynamics: Mathematical Progressions, 2(2), 1–13. https://doi.org/10.36676/mdmp.v2.i2.40

Issue

Section

Original Research Articles